差示掃描量熱儀測量的是與材料內(nèi)部熱轉變相關的溫度、熱流的關系,應用范圍非常廣,特別是材料的研發(fā)、性能檢測與質量控制。
材料的特性,如玻璃化轉變溫度、冷結晶、相轉變、熔融、結晶、產(chǎn)品穩(wěn)定性、固化/交聯(lián)、氧化誘導期等,都是差示掃描量熱儀的研究領域。
熱分析系列設備主要有:熱傳導檢查設備TSI2、熱物性測量設備TA33/TA35、熱物性顯微鏡TM3B等等。
熱傳導檢查設備TSI2可以通過熱將空隙、裂紋等產(chǎn)品或材料的缺隙可視化。
主要特點
1.全新的爐體結構,更好的解析度和分辨率以及更好的基線穩(wěn)定性。
2.數(shù)字式氣體質量流量計,精確控制吹掃氣體流量,數(shù)據(jù)直接記錄在數(shù)據(jù)庫中。
3.儀器可采用雙向控制(主機控制、軟件控制),界面友好,操作簡便。
差示掃描量熱儀應用范圍:
高分子材料的固化反應溫度和熱效應、物質相變溫度及其熱效應測定、高聚物材料的結晶、熔融溫度及其熱效應測定、高聚物材料的玻璃化轉變溫度。
差示掃描量熱儀作為常見的煤炭化驗設備—量熱儀系列產(chǎn)品中的一員,在整個的量熱儀家族中占據(jù)這舉足輕重的地位,一直以來,工作人員都在熟練的操作這些儀器進行工作,但是,同樣也存在不少個的人對這種量熱儀究竟是怎樣工作的還不是很明白,本文特匯總部分資料說明下差示掃描量熱儀的工作原理。
一、示差掃描量熱法我們必須的明白這種量熱儀運用的原理其實就是示差掃描量熱法:
示差掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率差與溫度關系的一種技術。DSC和DTA儀器裝置相似,所不同的是在試樣和參比物容器下裝有兩組補償加熱絲,當試樣在加熱過程中由于熱效應與參比物之間出現(xiàn)溫差腡時,通過差熱放大電路和差動熱量補償放大器,使流入補償電熱絲的電流發(fā)生變化,當試樣吸熱時,補償放大器使試樣一邊的電流立即增大;反之,當試樣放熱時則使參比物一邊的電流增大,直到兩邊熱量平衡,溫差腡消失為止。換句話說,試樣在熱反應時發(fā)生的熱量變化,由于及時輸入電功率而得到補償,所以實際記錄的是試樣和參比物下面兩只電熱補償?shù)臒峁β手铍S時間t的變化關系。如果升溫速率恒定,記錄的也就是熱功率之差隨溫度T的變化關系。
二、差示掃描量熱儀就是運用了以上的系統(tǒng)原理,現(xiàn)在我們找一款類似的設備看下這種類型的量熱儀都有哪些配置及特點?
?。ㄒ唬┲饕渲弥评湎到y(tǒng)除霜功能動態(tài)調制DSC功能
?。ǘ┲饕攸c功率補償型設計原理,直接測定能量和溫度而非溫度差,靈敏度為微型爐設計,儀器升降溫速度快,熱慢性小,平衡時間短量熱精度±溫度精度±溫度范圍-170℃~+550℃動態(tài)量耗
?。ㄈ┲饕猛荆?/p>
高分子材料的定性,定量分析、熔點、玻璃化溫度、結晶度、熔融熱和結晶熱、純度、反應動力學、比熱、相轉變溫度、相容性面向學科:
廣泛應用于塑料,橡膠,涂料,膠粘劑,醫(yī)藥,石油化工等不同領域熟悉這種差示掃描量熱儀的各種原理及配置后,以后我們在操作這種量熱儀的時候就能夠做到真正的熟練順手,同時我們也將更多的一下類似于智能一體定硫儀、定硫儀、自動量熱儀、微機全自動量熱儀等各種煤炭化驗設備。
差示掃描量熱法(DSC)是在程序控制溫度條件下,測量輸入給樣品與參比物的功率差與溫度關系的一種熱分析方法。差熱分析(DTA)是在程序控制溫度條件下,測量樣品與參比物之間的溫度差與溫度關系的一種熱分析方法。
兩種方法的物理含義不一樣,DTA僅可以測試相變溫度等溫度特征點,DSC不僅可以測相變溫度點,而且可以測相變時的熱量變化。DTA曲線上的放熱峰和吸熱峰無確定物理含義,而DSC曲線上的放熱峰和吸熱峰分別代表放出熱量和吸收熱量。因此我們以DSC為例來剖析量熱分析。
差示掃描量熱法(DifferentialScanningCalorimetry,簡稱DSC)為使樣品處于一定的溫度程序(升/降/恒溫)控制下,觀察樣品端和參比端的熱流功率差隨溫度或時間的變化過程,以此獲取樣品在溫度程序過程中的吸熱、放熱、比熱變化等相關熱效應信息,計算熱效應的吸放熱量(熱焓)與特征溫度(起始點,峰值,終止點...)。
DSC方法廣泛應用于塑料、橡膠、纖維、涂料、粘合劑、醫(yī)藥、食品、生物有機體、無機材料、金屬材料與復合材料等各類領域,可以研究材料的熔融與結晶過程、玻璃化轉變、相轉變、液晶轉變、固化、氧化穩(wěn)定性、反應溫度與反應熱焓,測定物質的比熱、純度,研究混合物各組分的相容性,計算結晶度、反應動力學參數(shù)等。
差示掃描量熱儀原理:
如上圖所示,樣品坩堝內(nèi)裝有樣品,與參比坩堝(通常為空坩堝)一起置于傳感器盤上,兩者之間保持熱對稱,在一個均勻的爐體內(nèi)按照一定的溫度程序(線性升溫、降溫、恒溫及其組合)進行測試,并使用一對熱電偶(參比熱電偶,樣品熱電偶)連續(xù)測量兩者之間的溫差信號。由于爐體向樣品/參比的加熱過程滿足傅立葉熱傳導方程,兩端的加熱熱流差與溫差信號成比例關系,因此通過熱流校正,可將原始的溫差信號轉換為熱流差信號,并對時間/溫度連續(xù)作圖,得到DSC圖譜。
樣品熱效應引起參比與樣品之間的熱流不平衡,由于熱阻的存在,參比與樣品之間的溫度差()與熱流差成一定的比例關系。將對時間積分,可得到熱焓:(溫度,熱阻,材料性質…)
由于兩個坩堝的熱對稱關系,在樣品未發(fā)生熱效應的情況下,參比端與樣品端的信號差接近于零,在圖譜上得到的是一條近似的水平線,稱為“基線”。當然任何實際的儀器都不可能達到完美的熱對稱,再加上樣品端與參比端的熱容差異,實測基線通常不完全水平,而存在一定的起伏,這一起伏通常稱為“基線漂移”。
而當樣品發(fā)生熱效應時,在樣品端與參比端之間則產(chǎn)生了一定的溫差/熱流信號差。將該信號差對時間/溫度連續(xù)作圖,可以獲得類似如下的圖譜:
差熱分析曲線怎樣分析?
按照DIN標準與熱力學規(guī)定,圖中所示向上(正值)為樣品的吸熱峰(較為典型的吸熱效應有熔融、分解、解吸附等),向下(負值)為放熱峰(較為典型的放熱效應有結晶、氧化、固化等),比熱變化則體現(xiàn)為基線高度的變化,即曲線上的臺階狀拐折(較為典型的比熱變化效應有玻璃化轉變、鐵磁性轉變等)。
圖譜可在溫度與時間兩種坐標下進行轉換。
對于吸/放熱峰,較常用的可以分析其起始點、峰值、終止點與峰面積。這其中:
起始點:峰之前的基線作切線與峰左側的拐點處作切線的相交點,往往用來表征一個熱效應(物理變化或化學反應)開始發(fā)生的溫度(時間)。
峰值:吸/放熱效應最大的溫度(時間)點。
終止點:峰之后的基線作切線與峰右側的拐點處作切線的相交點,與起始點相呼應,往往用來表征一個熱效應(物理變化或化學反應)結束的溫度(時間)。
面積:對吸/放熱峰取積分所得的面積,單位J/g,用來表征單位重量的樣品在一個物理/化學過程中所吸收/放出的熱量。
另外,在軟件中還可對吸/放熱峰的高度、寬度、面積積分曲線等特征參數(shù)進行標示。對于比熱變化過程,則可分析其起始點、中點、結束點以及拐點、比熱變化值等參數(shù)。
以上就是關于差示掃描量熱分析儀原理與差熱分析曲線分析知識的介紹,如果對差示掃描量熱分析儀的原理、結構、曲線分析還不明白的地方,可以繼續(xù)查詢和關注我們。