德國庫kubler伯勒絕對值編碼器如何分辨:德國kubler旋轉編碼器是歐洲重要的、具規(guī)模,品種齊全的編碼器,kubler編碼器均在嚴格條件下經過長時間測試,產品質量得以嚴格保證同時,kubler的獨特的生產管理體系保證了快的交貨時間。kubler編碼器自進入中國市場以來,已廣泛應用于電機、印刷包裝機械、機床、冶金,紡織機械、電梯、和化工等。 庫伯勒的增量型和絕對值型編碼器和磁性尺測量技術,憑借出眾的技術,靈活的安裝機械性能,完善的后服務,立足市場. 產品被廣泛應用于港口機械、冶金、機床紡織機械、起重設備、自動倉儲、化工、電梯、印刷包裝等行業(yè)
德國庫伯勒KUBLER編碼器、KUBLER旋轉編碼器、KUBLER光電編碼器、KUBLER磁性編碼器、KUBLER拉繩編碼器、KUBLER增量型編碼器、KUBLER絕對值型編碼器、KUBLER拉線盒、KUBLER...
產品:Kubler計數(shù)器、Kubler編碼器、KUBLER旋轉編碼器、KUBLER絕對值編碼器、KUBLER增量編碼器、KUBLER線性編碼器、KUBLER拉繩編碼器 德國庫伯勒KUBLER(KUEBLER)
器件區(qū)別編輯
庫伯勒單圈絕對值編碼器到多圈絕對值編碼器。
絕對值旋轉單圈絕對值編碼器,以轉動中測量光電碼盤各道刻線,以獲取的編碼,當轉動超過360度時,編碼又回到原點,這樣就不符合絕對編碼的原則,這樣的編碼只能用于旋轉范圍360度以內的測量,稱為單圈絕對值編碼器。
測量旋轉超過360度范圍,用到多圈絕對值編碼器,編碼器生產運用鐘表齒輪機械原理,當中心碼盤旋轉時,通過齒輪傳動另一組碼盤(或多組齒輪,多組碼盤),在單圈編碼的基礎上再增加圈數(shù)的編碼,以擴大編碼器的測量范圍,這樣的絕對編碼器就稱為多圈式絕對編碼器,它同樣是由機械位置確定編碼,每個位置編碼不重復,而無需記憶。
多圈編碼器另一個優(yōu)點是由于測量范圍大,使用往往富裕較多, 這樣在安裝時不必要費勁找零點, 將某一中間位置作為起始點就可以了,大大簡化了安裝調試難度。
德國庫kubler伯勒絕對值編碼器工作原理:
系列絕對編碼器光碼盤上有許多道光通道刻線,每道刻線依次以2線、4線、8線、16線編排,在編碼器的每一個位置,通過讀取每道刻線的通、暗,獲得一組從2的零次方到2的n-1次方的的2進制編碼(格雷碼),這就稱為n位絕對編碼器。這樣的編碼器是由光電碼盤的機械位置決定的,它不受停電、干擾的影響。
庫伯勒絕對編碼器由機械位置確定編碼,它無需記憶,無需找參考點,而且不用一直計數(shù),什么時候需要知道位置,什么時候就去讀取它的位置。這樣,編碼器的抗干擾特性、數(shù)據的可靠性大大提高了。
庫伯勒旋轉增量值編碼器以轉動時輸出脈沖,通過計數(shù)設備來計算其位置,當編碼器不動或停電時,依靠計數(shù)設備的內部記憶來記住位置 。這樣,當停電后,編碼器不能有任何的移動,當來電工作時,編碼器輸出脈沖過程中,也不能有干擾而丟失脈沖,不然,計數(shù)設備計算并記憶的零點就會偏移,而且這種偏移的量是無從知道的,只有錯誤的生產結果出現(xiàn)后才能知道。
絕對編碼器光碼盤上有許多道光通道刻線,每道刻線依次以2線、4線、8線、16線編排,這樣,在編碼器的每一個位置,通過讀取每道刻線的通、暗,獲得一組從2的零次方到2的n-1次方的的2進制編碼(格雷碼),這就稱為n位絕對編碼器。這樣的編碼器是由光電碼盤進行記憶的。
庫伯勒絕對編碼器由機械位置確定編碼,它無需記憶,無需找參考點,而且不用一直計數(shù),什么時候需要知道位置,什么時候就去讀取它的位置。這樣,編碼器的抗干擾特性、數(shù)據的可靠性大大提高了。
從單圈絕對值編碼器到多圈絕對值編碼器,絕對值旋轉單圈絕對值編碼器,以轉動中測量光電碼盤各道刻線,以獲取的編碼,當轉動超過360度時,編碼又回到原點,這樣就不符合絕對編碼的原則,這樣的編碼只能用于旋轉范圍360度以內的測量,稱為單圈絕對值編碼器。
編碼器由一個中心有軸的光電碼盤,其上有環(huán)形通、暗的刻線,有光電發(fā)射和接收器件讀取,獲得四組正弦波信號組合成A、B、C、D,每個正弦波相差90度相位差(相對于一個周波為360度),將C、D信號反向,疊加在A、B兩相上,可增強穩(wěn)定信號;另每轉輸出一個Z相脈沖以代表零位參考位。
旋轉編碼器是用來測量轉速的裝置。它分為單路輸出和雙路輸出兩種。技術參數(shù)主要有每轉脈沖數(shù)(幾十個到幾千個都有),和供電電壓等。單路輸出是指旋轉編碼器的輸出是一組脈沖,而雙路輸出的旋轉編碼器輸出兩組相位差90度的脈沖,通過這兩組脈沖不僅可以測量轉速,還可以判斷旋轉的方向。
編碼器工作原理
是將信號(如比特流)或數(shù)據進行編制、轉換為可用以通訊、傳輸和存儲的信號形式的設備。把角位移或直線位移轉換成電信號,前者稱為碼盤,后者稱為碼尺。
按照讀出方式可以分為接觸式和非接觸式兩種;按照工作原理可分為增量式和絕對式兩類。增量式是將位移轉換成周期性的電信號,再把這個電信號轉變成計數(shù)脈沖,用脈沖的個數(shù)表示位移的大小。
絕對式的每一個位置對應一個確定的數(shù)字碼,因此它的示值只與測量的起始和終止位置有關,而與測量的中間過程無關。
編碼器性能由其參數(shù)決定,不同的型號有不同的參數(shù),其性能也有所不同。
1、看編碼器輸出信號的穩(wěn)定性:
指編碼器在實際運行條件下,保持規(guī)定精度的能力。影響其穩(wěn)定性的原因主要就是溫度對電子器件造成的漂移、外界加于編碼器的變形力以及光源特性的變化。
2、編碼器信號輸出形式:
在大多數(shù)情況下,直接從編碼器的光電檢測器件獲取的信號電平較低,波形也不規(guī)則,還不能適應于控制、信號處理和遠距離傳輸?shù)囊蟆?/p>
3、編碼器的響應頻率:
其輸出的響應頻率取決于光電檢測器件、電子處理線路的響應速度。當編碼器高速旋轉時,如果其分辨率很高,那么編碼器輸出的信號頻率將會很高。
4、編碼器的分辨率:光電編碼器的分辨率是以編碼器軸轉動一周所產生的輸出信號基本周期數(shù)來表示的,即脈沖數(shù)/轉(PPR)。碼盤上的透光縫隙的數(shù)目就等于編碼器的分辨率,碼盤上刻的縫隙越多,編碼器的分辨率就越高。
5、編碼器的精度:
精度是一種度量在所選定的分辨率范圍內,確定任一脈沖相對另一脈沖位置的能力。精度通常用角度、角分或角秒來表示,與分辨率沒有關系
增量式編碼器,主要的區(qū)別在于輸出信號是正弦波模擬量信號,而不是數(shù)字量信號。它的出現(xiàn)主要是為了滿足電氣領域的需要-用作電動機的反饋檢測元件。在與其它系統(tǒng)相比的基礎上,人們需要提高動態(tài)特性時可以采用這種編碼器。
為了保證良好的編碼器控制性能,編碼器的反饋信號必須能夠提供大量的脈沖,尤其是在轉速很低的時候,采用傳統(tǒng)的增量式編碼器產生大量的脈沖,從許多方面來看都有問題,當電機高速旋轉(6000rpm)時,傳輸和處理數(shù)字信號是困難的。
在這種情況下,處理給伺服電機的信號所需帶寬(例如編碼器每轉脈沖為10000)將很容易地超過MHz門限;而另一方面采用模擬信號大大減少了上述麻煩,并有能力模擬編碼器的大量脈沖。這要感謝正弦和余弦信號的內插法,它為旋轉角度提供了計算方法。這種方法可以獲得基本正弦的高倍增加,例如可從每轉1024個正弦波編碼器中,獲得每轉超過1000,000個脈沖。接受此信號所需的帶寬只要稍許大于100KHz即已足夠。內插倍頻需由二次系統(tǒng)完成。
編碼器通過計數(shù)設備來計算其位置,當編碼器不動或停電時,依靠計數(shù)設備的內部記憶來記住位置。這樣,當停電后,編碼器不能有任何的移動,當來電工作時,編碼器輸出脈沖過程中,也不能有干擾而丟失脈沖,不然,計數(shù)設備計算并記憶的零點就會偏移,而且這種偏移的量是無從知道的,只有錯誤的生產結果出現(xiàn)后才能知道。
編碼器解決的方法是增加參考點,BEN編碼器每經過參考點,將參考位置修正進計數(shù)設備的記憶位置。在參考點以前,是不能保證位置的準確性的。為此,在工控中就有每次操作先找參考點,開機找零等方法。
這樣的方法對有些工控項目比較麻煩,甚至不允許開機找零(開機后就要知道準確位置),于是就有了絕對編碼器的出現(xiàn)。
編碼器光碼盤上有許多道光通道刻線,每道刻線依次以2線、4線、8線、16線編排,在編碼器的每一個位置,通過讀取每道刻線的通、暗,獲得一組從2的零次方到2的n-1次方的wei一的2進制編碼(格雷碼),這就稱為n位絕對編碼器。這樣的編碼器是由光電碼盤的機械位置決定的,它不受停電、干擾的影響。
絕對編碼器由機械位置確定編碼,它無需記憶,無需找參考點,而且不用一直計數(shù),什么時候需要知道位置,什么時候就去讀取它的位置。這樣,編碼器的抗干擾特性、數(shù)據的可靠性大大提高了。
編碼器器到多圈絕對值編碼器。
絕對值旋轉單圈絕對值編碼器,以轉動中測量光電碼盤各道刻線,以獲取wei一的編碼,當轉動超過360度時,編碼又回到原點,這樣就不符合絕對編碼wei一的原則,這樣的編碼只能用于旋轉范圍360度以內的測量,稱為單圈絕對值編碼器。
測量旋轉超過360度范圍,用到多圈絕對值編碼器,編碼器生產運用鐘表齒輪機械原理,當中心碼盤旋轉時,通過齒輪傳動另一組碼盤(或多組齒輪,多組碼盤),在單圈編碼的基礎上再增加圈數(shù)的編碼,以擴大編碼器的測量范圍,這樣的絕對編碼器就稱為多圈式絕對編碼器,它同樣是由機械位置確定編碼,每個位置編碼wei一不重復,而無需記憶。
多圈編碼器另一個優(yōu)點是由于測量范圍大,使用往往富裕較多, 這樣在安裝時不必要費勁找零點, 將某一中間位置作為起始點就可以了,大大簡化了安裝調試難度。
編碼器軸旋轉時,有相應的相位輸出。其旋轉方向的判別和脈沖數(shù)量的增減,需借助后部的判向電路和計數(shù)器來實現(xiàn)。其計數(shù)起點可任意設定,并可實現(xiàn)多圈的無限累加和測量。還可以把每轉發(fā)出一個脈沖的Z信號,作為參考機械零位。當脈沖已固定,而需要提高分辨率時,可利用帶90度相位差A,B的兩路信號,對原脈沖數(shù)進行倍頻。
編碼器軸旋轉器時,有與位置一一對應的代碼(二進制,BCD碼等)輸出,從代碼大小的變更即可判別正反方向和位移所處的位置,而無需判向電路。它有一個jeu對零位代碼,當停電或關機后再開機重新測量時,仍可準確地讀出停電或關機位置地代碼,并準確地找到零位代碼。一般情況下絕對值編碼器的測量范圍為0~360度,但特殊型號也可實現(xiàn)多圈測量。