原子力顯微鏡的原理: 原子力顯微鏡是利用原子間的相互作用力來觀察物體表面微觀形貌的。AFM的關(guān)鍵組成部分是一個(gè)頭上帶有探針的微懸臂。微懸臂大小在數(shù)十至數(shù)百mm,通常由硅或者氮化硅構(gòu)成.探針針尖長度約幾mm,尖端的曲率半徑則在0.1nm量級。當(dāng)探針接近樣品表面時(shí),針尖和表面的作用力使微懸臂彎曲偏移。這種偏移由射在微懸臂上的激光束反射至光電探測器而測量到。 當(dāng)承載樣品的壓電掃描器在針尖下方運(yùn)動(dòng)時(shí),微懸臂將隨樣品表面的起伏而受到不同的作用力,繼而發(fā)生不同程度的彎曲.因此,反射到光電探測器中光敏二極管陣列的光束也將發(fā)生偏移.光電探測器通過檢測光斑位置的變化,就可以獲得微懸臂的偏轉(zhuǎn)狀態(tài),反饋電路可把探測到的微懸臂偏移量信號轉(zhuǎn)換成圖像信號,通過計(jì)算機(jī)輸出到屏幕上,同時(shí)根據(jù)微懸臂的偏移量控制壓電掃描器的運(yùn)動(dòng)。
原子力顯微鏡(atomicforcemicroscope,簡稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測樣品原子之間的作用力,從而達(dá)到檢測的目的,具有原子級的分辨率。由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧與斯坦福大學(xué)的CalvinQuate于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)最大的差別在于并非利用電子隧穿效應(yīng),而是檢測原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來呈現(xiàn)樣品的表面特性。 優(yōu)點(diǎn) 相對于掃描電子顯微鏡,原子力顯微鏡具有許多優(yōu)點(diǎn)。不同于電子顯微鏡只能提供二維圖像,AFM提供真正的三維表面圖。同時(shí),AFM不需要對樣品的任何特殊處理,如鍍銅或碳,這種處理對樣品會(huì)造成不可逆轉(zhuǎn)的傷害。第三,電子顯微鏡需要運(yùn)行在高真空條件下,原子力顯微鏡在常壓下甚至在液體環(huán)境下都可以良好工作。這樣可以用來研究生物宏觀分子,甚至活的生物組織。 缺點(diǎn) 和掃描電子顯微鏡(SEM)相比,AFM的缺點(diǎn)在于成像范圍太小,速度慢,受探頭的影響太大。原子力顯微鏡(AtomicForceMicroscope)是繼掃描隧道顯微鏡(ScanningTunnelingMicroscope)之后發(fā)明的一種具有原子級高分辨的新型儀器,可以在大氣和液體環(huán)境下對各種材料和樣品進(jìn)行納米區(qū)域的物理性質(zhì)包括形貌進(jìn)行探測,或者直接進(jìn)行納米操縱;現(xiàn)已廣泛應(yīng)用于半導(dǎo)體、納米功能材料、生物、化工、食品、醫(yī)藥研究和科研院所各種納米相關(guān)學(xué)科的研究實(shí)驗(yàn)等領(lǐng)域中,成為納米科學(xué)研究的基本工具。原子力顯微鏡與掃描隧道顯微鏡相比,由于能觀測非導(dǎo)電樣品,因此具有更為廣泛的適用性。當(dāng)前在科學(xué)研究和工業(yè)界廣泛使用的掃描力顯微鏡(ScanningForceMicroscope),其基礎(chǔ)就是原子力顯微鏡。原子力顯微鏡優(yōu)點(diǎn)和缺點(diǎn)