超聲流量傳感器以及超聲電子水表可以采用換能器外掛方式(見圖1)和換能器侵入方式(見圖2)。
由于
所以
或
式中,t1-2 —超聲波正向傳播時間; t2-1—超聲波逆向傳播時間;Δt —超聲波正、逆向傳播時間差;c —超聲波傳播速度;v —流體軸向平均線流速; D—管道直徑; φ—超聲波傳播方向與流體軸線間的夾角。
圖3、超聲時差測量法工作原理圖
將式(4)兩式相減得,
將代入式(5)得,
式(6)已消去了超聲波傳播聲速項。只要測得正、逆向時間(t1-2、t2-1)和時間差Δt,即可得到聲道上流速的線平均值v。
式中M為常數(shù),僅與超聲水表測量管的加工、裝配精度有關(即與管道內(nèi)徑尺寸D與換能器安裝角度φ有關)。M值的改變會影響超聲水表流量測量理論特性曲線的斜率,見圖4。
封閉管道通常采用流速面平均值作為水表流量測量特性校準與測量誤差的評判依據(jù)。由于超聲測量得到的線平均值v與流速分布的面平均值v在不同雷諾數(shù)以及相應流速分布時的關系很復雜,因此其時差表達式與流速面平均值v之間在不同的流量段呈現(xiàn)出了明顯的非線性,見圖5。這就需要在不同的流速分布區(qū)域對超聲流量傳感器采用不同的特性校正方法。
圖5、超聲流量傳感器在不同流速區(qū)間線與面平均速度之間的特性
圖6、超聲電子水表工作原理框圖
超聲波傳感器是利用超聲波的特性研制而成的傳感器。
超聲波是一種振動頻 率高于聲波的機械波,由換能晶片在電壓的激勵下發(fā)生振動產(chǎn)生的;
它具有頻率高、波長短、繞射現(xiàn)象小,特別是方向性好、能夠成為射線而定向傳播等特點。
超聲波測距原理
超聲波對液體、固體的穿透本領很大,尤其是在陽光不透明的固體中,它可穿透幾十米的深度。
超聲波碰到雜質或分界面會產(chǎn)生顯著反射形成反射成回波,碰到活動物體能產(chǎn)生多普勒效應。
因此超聲波檢測廣泛應用在工業(yè)、國防、生物醫(yī)學等方面以超聲波作為檢測手段,必須產(chǎn)生超聲波和接收超聲波。
完成這種功能的裝置就是超聲波傳感器,習慣上稱為超聲換能器,或者超聲探頭。
激光測距傳感器工作原理
激光傳感器工作時,先由激光對準目標發(fā)射激光脈沖。
經(jīng)目標反射后激光向各方向散射。部分散射光返回到傳感器接收器,被光學系統(tǒng)接收后成像到雪崩光電二極管上。
雪崩光電二極管是一種內(nèi)部具有放大功能的光學傳感器,因此它能檢測極其微弱的光信號。
記錄并處理從光脈沖發(fā)出到返回被接收所經(jīng)歷的時間,即可測定目標距離。
激光傳感器必須極其精確地測定傳輸時間,因為光速太快。
紅外線測距傳感器工作原理
紅外測距傳感器利用紅外信號遇到障礙物距離的不同反射的強度也不同的原理,進行障礙物遠近的檢測。
紅外測距傳感器具有一對紅外信號發(fā)射與接收二極管,發(fā)射管發(fā)射特定頻率的紅外信號,接收管接收這種頻率的紅外信號;
當紅外的檢測方向遇到障礙物時,紅外信號反射回來被接收管接收;
經(jīng)過處理之后,通過數(shù)字傳感器接口返回到機器人主機,機器人即可利用紅外的返回信號來識別周圍環(huán)境的變化。
總結,上述的內(nèi)容主要是針對測距傳感器的原理方面的知識講解的;
如超聲波測距傳感器原理、激光測距傳感器工作原理及紅外線測距傳感器工作原理這三方面;
關于“測距傳感器的原理”的分享就先到這里了,希望上述介紹對大家的工作上有所幫助。
熱電偶溫度傳感器實際上是一種能量轉換器,它將熱能轉換為電能,用所產(chǎn)生的熱電勢測量溫度。熱電偶是一次儀表,它直接測量溫度,并把溫度信號轉換成熱電動勢信號,通過電氣儀表(二次儀表)轉換成被測介質的溫度。 熱電偶測溫的基本原理是兩種不同成份的材質導體組成閉合回路,當兩端存在溫度梯度時,回路中就會有電流通過,此時兩端之間就存在電動勢——熱電動勢: 這就是所謂的塞貝克效應。兩種不同成份的均質導體為熱電極,溫度較高的一端為工作端,溫度較低的一端為自由端,自由端通常處于某個恒定的溫度下。根據(jù)熱電動勢與溫度的函數(shù)關系,制成熱電偶分度表;分度表是自由端溫度在0℃時的條件下得到的,不同的熱電偶具有不同的分度表。 在熱電偶回路中接入第三種金屬材料時,只要該材料兩個接點的溫度相同,熱電偶所產(chǎn)生的熱電勢將保持不變,即不受第三種金屬接入回路中的影響。因此,在熱電偶測溫時,可接入測量儀表,測得熱電動勢后,即可知道被測介質的溫度。 兩種不同成份的導體(稱為熱電偶絲材或熱電極)兩端接合成回路,當接合點的溫度不同時,在回路中就會產(chǎn)生電動勢,這種現(xiàn)象稱為熱電效應,而這種電動勢稱為熱電勢。熱電偶就是利用這種原理進行溫度測量的,其中,直接用作測量介質溫度的一端叫做工作端(也稱為測量端),另一端叫做冷端(也稱為補償端);冷端與顯示儀表或配套儀表連接,顯示儀表會指出熱電偶所產(chǎn)生的熱電勢。 而影響熱電偶溫度傳感器工作的因素也很多,其中插入深度、響應時間、熱阻抗增加、熱輻射四個因素是最主要的因素: 熱電偶測溫點的選擇是較為重要的。測溫點的位置,對于生產(chǎn)工藝過程而言,一定要具有典型性、代表性,否則將失去測量與控制的意義。熱電偶插入被測場所時,沿著傳感器的長度方向將產(chǎn)生熱流。當環(huán)境溫度低時就會有熱損失。致使熱電偶溫度傳感器與被測對象的溫度不一致而產(chǎn)生測溫誤差。總之,由熱傳導而引起的誤差,與插入深度有關。而插入深度又與保護管材質有關。金屬保護管因其導熱性能好,其插入深度應該深一些,陶瓷材料絕熱性能好,可插入淺一些。接觸法測溫的基本原理是測溫元件要與被測對象達到熱平衡。因此,在測溫時需要保持一定時間,才能使兩者達到熱平衡。而保持時間的長短,同測溫元件的熱響應時間有關。而熱響應時間主要取決于傳感器的結構及測量條件,差別極大。對于氣體介質,尤其是靜止氣體,至少應保持30min以上才能達到平衡;對于液體而言,較快也要在5min以上。對于溫度不斷變化的被測場所,尤其是瞬間變化過程,全過程僅1秒鐘,則要求傳感器的響應時間在毫秒級。因此,普通的溫度傳感器不僅跟不上被測對象的溫度變化速度出現(xiàn)滯后,而且也會因達不到熱平衡而產(chǎn)生測量誤差??梢赃x擇響應快的傳感器。對熱電偶而言除保護管影響外,熱電偶的測量端直徑也是其主要因素,即偶絲越細,測量端直徑越小,其熱響應時間越短。 在高溫下使用的熱電偶溫度傳感器,如果被測介質為氣態(tài),那么保護管表面沉積的灰塵等將燒熔在表面上,使保護管的熱阻抗增大;如果被測介質是熔體,在使用過程中將有爐渣沉積,不僅增加了熱電偶的響應時間,而且還使指示溫度偏低。因此,除了定期檢定外,為了減少誤差,經(jīng)常抽檢也是必要的。例如,進口銅熔煉爐,不僅安裝有連續(xù)測溫熱電偶溫度傳感器,還配備消耗型熱電偶測溫裝置,用于及時校準連續(xù)測溫用熱電偶的準確度。
下一篇:冷熱沖擊試驗箱技術參數(shù)