合金分析儀是一種XRF光譜分析技術(shù),可用于確認(rèn)物質(zhì)里的特定元素,同時(shí)將其量化。
它可以根據(jù)X射線的發(fā)射波長(λ)及能量(E)確定具體元素,而通過測量相應(yīng)射線的密度來確定此元素的量。XRF度普術(shù)就能測定物質(zhì)的元素構(gòu)成。
每一個(gè)原子都有自己固定數(shù)量的電子(負(fù)電微粒)運(yùn)行在核子周圍的軌道上。而且其電子的數(shù)量等同于核子中的質(zhì)子(正電微粒)數(shù)量。從元素周期表中的原子數(shù)可以得知質(zhì)子的數(shù)目。
每一個(gè)原子數(shù)都對應(yīng)固定的元素名稱。能量色散X螢光與波長色散X螢光光譜分析技術(shù)特別研究與應(yīng)用了*里層三個(gè)電子軌道即K,L,M上的活動(dòng)情況,其中K軌道*為接近核子,每個(gè)電子軌道則對應(yīng)某元素一個(gè)個(gè)特定的能量層。
在XRF分析法中,從X光發(fā)射管里放射出來的高能初級射線光子會撞擊樣本元素。這些初級光子含有足夠的能量可以將*里層即K層或L層的電子撞擊脫軌。
這時(shí),原子變成了不穩(wěn)定的離子。由于電子本能會尋求穩(wěn)定,外層L層或M層的電子會進(jìn)入彌補(bǔ)內(nèi)層的空間。在這些電子從外層進(jìn)入內(nèi)層的過程中,它們會釋放出能量,稱之為二次X射線光子。
而整個(gè)過程則稱為螢光輻射。每種元素的二次射線都各有特征。而X射線光子螢光輻射產(chǎn)生的能量是由電子轉(zhuǎn)換過程中內(nèi)層和外層之間的能量差決定的。
特定元素在一定時(shí)間內(nèi)所放射出來的X射線的數(shù)量或者密度,能夠用來衡量這種元素的數(shù)量。典型的XRF能量分布光譜顯示了不同能量時(shí)光子密度的分布情況。
氧化鋯氧分析儀是一種以氧化鋯為測量原理的氧氣分析儀,它用來在擁有UOP許可的連續(xù)催化再生過程的再生器內(nèi)氧含量的檢測。
氧化鋯氧分析器的工作原理
在一片高致密的氧化鋯固體電解質(zhì)的兩側(cè),用燒結(jié)的方法制成幾微米到幾十微米厚的多孔鉑層作為電極,再在電極上焊上鉑絲作為引線;
就構(gòu)成了氧濃差電池,如果電池左側(cè)通入?yún)⒈葰怏w(空氣)。其氧分壓為po;電池右側(cè)通入被測氣體,其氧分壓為p1(未知)。
設(shè)po>p1,在高溫下(650~850oC), 氧就會從分壓大的Po側(cè)向分壓小的P1側(cè)擴(kuò)散,這種擴(kuò)散,不是氧分子透過氧化鋯從po側(cè)P1側(cè),而是氧分子離解成氧離子后通過氧化鋯的過程。
在750oC左右的高溫中,在鉑電極的催化作用下,,在電池的po側(cè)發(fā)生還原反應(yīng),一個(gè)氧分子從鉑電極取得4個(gè)電子,變成兩個(gè)氧離子(O2-)進(jìn)入電解質(zhì),即
O2(pn)+4e→2O2-
po側(cè)的鉑電極由于大量給出電子而帶正電,成為氧濃差電池的正極或陽極。
這些氧離子進(jìn)人電解質(zhì)后,通過晶體中的空穴向前運(yùn)動(dòng)到達(dá)右側(cè)的鉑電極,在電池的p1側(cè)發(fā)生氧化反應(yīng),氧離子在鉑電極上釋放電子并結(jié)合成氧分子析出,即
2O2-→ O2(P1)+4e
p1側(cè)的鉑電極由于大量得到電子而帶負(fù)電,成為氧濃差電池的負(fù)極或陰極。
這樣在兩個(gè)電極上由于正負(fù)電荷的堆積而形成一個(gè)電勢,稱之為氧濃差電動(dòng)勢。
當(dāng)用導(dǎo)線將兩個(gè)電極連成電路時(shí),負(fù)極上的電子就會通過外電路流到正極,再供給氧分子形成氧離子,電路中就有電流通過。